
Copyright © IFAC Control Systems Design,
Bratislava, Slovak Republic, 2003

IFAC

~
Publications
www.elsevier.com/locate/ifac

NONLINEAR SYSTEM MODELS BASED ON INTERVAL LINEARlZATION:
A MEDICAL APPLICATION

Jaroslav Kultan

Abstract: The paper deals with an application of models based upon interval linearization
in modelling human organism parameters, especially during long-term medical treat
ments. The generated model enables to predict patient's state as well as the impact of
taken therapeutics on it. Application of such models brings about improvement of the
treatment quality and helps physicians in the decision making process. Copyright © 2003
IFAC
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I. INTRODUCTION

In the medical practice there are often encountered
diseases requiring a long-term treatment whereby it
is almost impossible to continuously monitor the
organism parameters. Very often. physicians are
obliged to go repeatedly through a huge amount of
data acquired from the blood, urine and other analy
ses, to be able to take decisions based upon the pa
tient's state. This process can be supported by creat
ing a model of patient's state, based on which it is
possible to take a correct decision. Therefore we
focused on the identification of human organism
parameters under long-term medical treatments.
Results of blood tests, creation of their model and its
application in the patient's state prediction have
facilitated the decision making about additional in
terventions during the treatment. which helped to
improve the whole process. For the identification and
model generation we have used the interval lineariza
tion method.

2. NON LINEAR SYSTEM IDENTIFICATION

2.1. Identification using the intervallineari=ation
method

many models as in case of linearization in the operat
ing point, nor to search intricate nonlinear functions
which implementation is often questionable.
Identification of nonlinear dynamic systems by the
interval linearization method has been invented in
1986. The method has been updated several times by
improving some of their properties or the identifica
tion process itself [2] [3]. The presented method has
been applied not only in nonlinear system modelling
but also in designing controllers for nonlinear sys
tems [4].
Identification of nonlinear dynamic systems consists
in splitting the whole working range of the input and
output variables by the limits uk; and yk j • respec
tively, into several intervals (from where the name of
the method). Intersect of these intervals defines the
linearization interval (Fig. I).
Generating a system model using this method re
quires availability of the measured input and output
data. Measurements are to be carried out during the
system operation and organized in a table. Next. the
limits of individual intervals for the input and output
variables are to be specified. Intersect of these inter
vals defines the linearization section. For every
nonlinear system there can be several such sections
and the identification yields model of each lineariza
tion section in the following form

(I)

.I{I) 1/ +I q'>{1 - /7) +:t q' 1/(1 - (.J - d +1)7)
o ,"'I' ) .. 1 1f}.J

qk is vector of model coefficients in the k-th lineari
zation section. whereby

nu - number of samples of the input variable

(2)

(3)

(4)

k=1.2 ....kk

nu+ny

y(t) = z(t) qk

where

z(t)=[ I.y(t-I ).....y(t-ny).u(t-d-I ).....u(t-d-nu+ I)]

k k k
qk=(qo·ql····q

or concisely

The interval linearization method is one of relatively
new methods for nonlinear systems modelling. Basi
cally. it differentiates from other identification and
modelling approaches for such systems. one of which
consists in substituting the real system by a set of
nonlinear functions and relations which describe
processes in the system (the human organism can be
considered as a system); another possibility is substi
tution of the real system by a mathematical model
acquired by its linearization in a chosen operating
point, or it is possible to create abstract nonlinear
models.
The interval linearization method offers
a substantially different approach. generating a linear
model created not only for one operating point but
for a whole region called a linearization interval [I].
Such a model is able to include properties of the
given system. whereby it requires neither to create so
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ny - number of samples of the output variable

t - time

where r = 1.2... n : ny+nu+ I < n
The identification result is the matrix Q

T - sampling time

d - input variable shift

k - index of the linearization interval

A total number m of linearization intervals for nu = 1
and ny= I is

m = mu.my

and for nu> 1 and ny > 1 the number of linearization
intervals is given by

ql ql ql
0 I ml + ,~r

Q k k kq q q
0 I nil + ~\

q"' q"' q"'
0 I I1U + f~\'

(9)

kk = munu.myny (5)

I - auxiliary index

For many systems. long-term operation measure
ments of u(t). y(t) proved. that in practice. the num
bcr of linearization intervals does not comply with
their theoretical number and strongly depends on the
appropriateness of chosen limits and the volume of
mcasured data a\ailable.

The procedure for determining the index "k" of the
linearization interval is as follows. If the output \'ari-
able y(t-i). i=I.2 ny is from the amplitude band
(yks.,.yk,>- s = 1.2 my. then this band is dcnoted by

I,=s. Similarly. if the variable u(t-j-d+I).j=1.2 ...nu is
from the band (ukr.,.uk), r =1.2 .....mu. the corre-

sponding band is denoted I = r. These bands
nY"J

notations are collected in a vector 1=(11' 12.. .Inu+ny).
The linearization interval index is calculated as fol
lows
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input u(t)

2

input/output characteristics

16

14

12

=- 10
>;
:; 8c.
:;
0 6

4

2

Fig.l. Input/output characterisics of the system

3. IDENTIFICAnON OF BLOOD SYSTEM
PARAMETERS

(6)

(7)

(8)

1).8
I

tor 1= 1.2.....nu

wherc

k

81 = ml- I
) for 1= 1.2.....ny

8 - .n\" 11-11
It-ny - m) ..mu

Calculation of the linear model ( 1) or (2) for the k-th
lincarization intenal consists in determining the
\'ector of Iinearization cocrticients (4) from measured
samples y(t-i) and ult-j-d+ 1) tor i= 1.....ny. j= l... ..nu.
\\ithin the k-th ineari7.ation intcn·al.

The model itsclf is then specified from the relation
A"q"= b" , from \\hich \\e express the \cctor of the
model qk in thc k-th linearization section using the
least squares algorithm. To appl) it. it is necessaf) to

k
se tup the matrix A from measured \alucs y( t-i) and
u(t-j-d+ I) and the \'cetor b" from measured \alues

. "
y(t). For thc k-th nm oftht:: matrix A holds

a\""O\ = u(t-j-d+ I)

akl = I

"a u-l = y(t-i) for i= 1.2 ny

tor j= 1.2 nu

(9)

3. I. Data meaSllremel71

The considered method \\as \eriticd in modelling
leucocytes parameters for one year. During a one
year chemothcrapeutic treatment blood samples \\cre
taken sporadically and individual parameters \\'ere
measured. Values of indi\idual parameters are organ
ized in a tablt:: (Tab. 1). Input \'ariables arc \alues of
used therapeutics (V - vincristin. Cl' - C) splatinum).
or of certain supporting preparations (S). applied in
cases when the organism parameters ha\ e decreased
considerabl). Output parameters are HU. Ery. HKU.
LE. TR. Medicine intake is denoted by .. 1" in the day
of application.

k
The r-th entf) of the n~ctor b satisfies

b\ = y(t-O) (10)
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Table 2 summarizes values of measured. and interpo
lated (linearly and quadratically) values. Measured
values of individual variables are shown in Fig. 3.
Comparison of linearly and quadratically interpolated
values is depicted in Fig. 4. In measurement instants
values of individual functions coincide. Leucoeytes
and input variable values used for modelling are
shown in Fig. 5

The simplest interpolation method is the linear inter
polation. For values in individual days it substitutes
the values obtained by a uniform distribution of the
states between two measured values.
The quadratic interpolation method is a more advan
tageous one. using a quadratic approximation of
values between two measurements. Though it is quite
computationally demanding it follows better con
tinuous changes of individual parameters.
Input variables have been substituted by exponentials
reaching their maximum at application time of basic
therapeutics when their concentration In organism
decreases successively. The exponential lorgetting
factor changes with each considered variable.

N

Tab. I. Measured values of blood parameters
during the initial period

INPUTS OUTPUTS
HK

Cyk \" CP S HG [I"). G LE TRDate

14.07.99 I I 118 3.70.29 2.1 186

20.07.99 6 7 124 4.4 0.37 1.6 225

22.7.99 2 9 117 4.090.37 1.8 205

29.7.99 7 16 93 3.260.37152 143

317.99 2 18 98 3.37038 1.2 149

3.8.99 3 21 64 2.32 0.1 I 110

5.8.99 2 23 82 2.860.37 1.24 143

25.8.99 20 43 2 126 413035 29 224

2999 8 51 113 3.70.37158 184

6.9.99 4 55 95 3.090.38 1.04 108

9.9.99 3 58 95 3410.27 1.3 145

21.9.99 12 70 109 3490381.33 117

27.9.99 6 76 104 340.38 1.2 123

61099 9 85 113 3.740.361.08 281

13.1099 7 92 117 3760371.65 243

2.11.99 5 112 96 3.180.380.74 138

5.11.99 3 115 94 33 0.27 0.8 149

9.11.99 4 119 101 3.350.36 1.1187
A graph of some monitored quantities is in Fig.2
whereby the leucocytes. which characterize patienrs
immunity are the most interesting parameter.

5 -

4.5 days

4 0 118 3.7 0.29 2.1 I 19 3.73 0.29 2.08

3.5 2 0.7408 0%08 0 119 3.82 0.3 2.02 119 3.73 0.29 2.08

3 3 05488 0.9231 0 120 3.93 0.32 1.93 12~ 4.01 0.31 1.89

2.5
4 0.4060 0.8869 0 121 4.05 0.33 1.85 125 4.~~ 0.33 1.74

2
5 0.3012 0.8521 0 122 4.17 0.34 1.77 126 437 0.35 1.64

1.5
6 0.2231 0.8187 0 123 4.28 0.36 1.68 In 4.44 0.36 158

0.5 7 01653 0.7866 D 124 4.4 037 1.6 126 4.46 037 1.57

0 8 0.1225 0.7558 0 121 4.25 0.37 1.7 124 4.4 0.37 1.61
(]) (]) (]) (]) (]) Cl Cl 0 0 0 0 0
Cl Cl (]) (]) (]) (]) Cl 0 0 0 0 0 9 10907 0.7261 0 117 409 0.37 18 I~O 4.24 0.37 1.72..... <xi oi (]) (]) Cl Cl 0 0 0 0 0

~ ~ N N ~ ~ N
Cl «) ~ 0 ~ ~ N N M 'VN N N

~ ~ ~ ~ lCi 10 0.808 06977 0 114 3.97 D37 1.76 116 4.07 D37 1.81co M 0 .....
lCi N oi ci N N

N N

" 05986 06703 0 110 3.85 0.37 1.72 109 H4 0.37 1.85
--Ery --LE

I~ 04435 0.644 0 107 3.73 0.37 1.68 103 3.65 0.37 I 8t>

Fig.2 Measured values of some monitored
13 0.3285 06188 0 103 3.6~ 037 164 98.t> 3.:' U.37 I 85

quantities
14 0.2434 05945 o 99.9 3.5 037 1.6 95.~ 3.38 0.37 1.8

3.1. Processing olmeasl/red data
15 0.1803 o 571~ 0%.4 3.38 lU7 1.56 9' , 3.3 037 1.74.' -

As the input data were measured In various time 16 1.1336 0.5488 0 93 3.~t> D.37 I 52 9~ 4 3.2t> 037 1.64
intcl\als. they need to be pre-processed and appro-
priately for 17 0.8398 0.5273 o 955 ' " 037 Ut> 955 3.33 039 1.5adapted next computations. Computed :J.:J_

inll~l\als between individual measurements and miss- 18 0.62~1 0.5066 0 98 337 0.38 1.2 99.3 343 0.4 1.33
ing \alues have heen interpolated so as to reflect in
the best way thc \alues expected in the considered
time.
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respect to the possible application of chemotherapeu
tics. Even the state of leucoc)tes (along with other
parameters. of course) determines whether it is pos
sible to give the patient the therapeutics or not.
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Fig. 3 Graphical representation of the linear
approximation of selected organism parameters
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4.5 Fig. 5 Parameters of the input therapeutics and the
response of the organism - leucoc)tes

3.3. Search o/Iineari=ation intervals

A scrious drawback of the described method is the
search for lincarization intervals. i.e. specification of
limits tor individual intervals. In practicc this prob
lem is bcing solved in various ways. As medical
processes are rclatively slow a stepwise changing the
limits of domains and ranges of indi\'idual \uriables
ean sohe this problem.
Next. a model is calculated for all obtained intenals.
and a simulation is carried out with the already a\ail
able samples. Individual models are compared using
the classical method of summing squared diftcrenees
betwcen the measured and the calculated \·alues.
Using a graphical representation of indi\idual input
\'ariabks and modi tied \alues of squared error sums
f<lr each model we can find the intenals with the
least difference bet\\een the model outputs and the
real \ alues. Table 3 shows \alucs of some limits
(hrl. hr2. hr3. hr~ and thc "sqc" - sum of squared
errors).F
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Fig. ~. Quadratic approximation of selected
parameters of the organism

For modelling blood paramcters we ha\c chosen one
of its most important representatives. namely the
numbcr of leucoc)tes indicating patient's statc with
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Tab.) Sum ofs9uared errors (Sge) as a
function of limits

4. APPLICATION OF GENERATED MODELS

For the next analysis a model with the limits (hr I.
hr2. hr3.hr4) = ( 0.3:0.3:0.7:0.5) has been chosen.
Mathematical model and simulated data are in Fig. 6.

Fig.6 Simulation of LE parameters

--v--cp --8

pc hr1
1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.3
7 0.1
8 01
9 0.1

10 0.1
11 0.1
13 0.1
14 0.1
15 0.1
16 0.1
17 0.1
18 0.1
19 0.1

Based on the analysis of measured data and simula
tion of the possible patient's state (Fig. 6) it is possi
blc to assume that the patient's state will remain on a
low level fix a long-time and he cannot be gi\en the
relevant therapeutics due to it.
In a standard treatment the doctor takes the blood
samples several times and after hm'ing gathered
long-term results he decides to skip one cycle. Some
of the following facts underlie such a decision:
- on checking parameters he supposed that the pa
tient's state will improve. however this did not hap
pen:
- there was a possibility of helping by other means.
howe\er relati\ely mueh time has passed since then
and therdore such a stimulation is already inappro
priate.
Of course. there are a lot of other faets to be consid
ered in a physician's decision making. Simulation of
patient's state before starting a new curing cycle
could be one possible tool for helping his decision
taking. The obtained model shows that the organism
parameters arc relati\ely low and the patient is not
able to create a sufficient amount of necessary su~

-/.2. Simulation o/the medical treatment

-/.1. Problems 0/patient's treatment.

Application of some therapeutics may bring about a
considerable worsening of some human organism
parameters and thus their intake is possible only
under the assumption that the patient tolerates such a
treatment. One of such procedures is the application
of cytostatics in curing oncogenous diseases. Appli
cation of therapeutics is possible only if the leuco
cytes parameters have reached some specified value
(2000). To find out the patient's actual state it is
necessary to take his blood. evaluate the parameters
and to continue the treatment under the assumption
that the state is sufficiently good. If there are low
leucocytes. the blood taking has to be repeated after
1-3 days. Such frequent blood takings disturb the
patient. and make him suffer. Taking into account his
overall state. such a large number of blood with
drawals cannot contribute to an improved recovery.
On the other hand frequent blood takings are impor
tant because it is necessary to apply the therapeutics
in the specified time (necessity to keep the curative
procedures) or with a least possible delay.
It use to happen that despite numerous tests. the pa
tient's state does not improve and in order to keep
certain curative procedures it is necessary to apply
supporting and stimulating pharmaceuticals.
It is especially the decision making about whether to
make the patient suffer or stimulate the organism all
the same. which can be facilitated by the proposed
parameter model.
From Fig. 6 it is evident that in the last 250 -300
days of curing. the leucocytes (LE) number drops
and at the time of therapeutics application it even
does not reach the lower limit 2.

o

LE --Lem

0.41
0.61
0.83
1.12
1.47

hr4 sko
2.4 0.39
2.4 0.58
1.4 0.71
0.4 1.08
0.8 1.38
0.2 2.44

2 25
0.4 97.3
0.4 124
1.2 282
0.6 340
0.6 388
1.2
2.6
0.4
1.2
1.2

2

hr2 hr3
0.5 0.7
0.9 0.4
0.5 0.7
0.1 1
0.5 1
0.1 0.4
0.5 0.7
0.3 0.1
0.7 0.1
0.3 1
0.1 1
0.7 1
0.1 1
0.9 0.7
0.7 0.7
0.3 0.7
0.7 1
0.5 0.1
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stances. Should these facts be confinned by the re
sults from the first blood test. the physician can con
sider application of stimulating therapeutics. suppon
ing this decision by a simulation on the models.
In a real situation we have first simulated the impact
of the blood transfusion on other parameters. Trans
fusion was carried out already at about the IOOth day
of the curing procedure. Simulation results under
stimulator application are depicted in Fig. 7. Based
on obtained results (growth of the LE value above 3)
correctness of such a decision could have been an
ticipated.
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Cenainly. the interval linearization method is not the
only suitable one but hopefully it is not the last one
applied in medicine. and its implementation will
stimulate application of other methods as well.
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Fig.7 Simulation of LE parameters aner application
of a stimulator

Then the transfusion was completed and the w'hole
curati\e cycle was completed successfully.
Of course. the e.'\perience of physicians played an
imponant role in the whole treatment process as
\\ell. and the proposed model has sef\ed only as one
supporting tool for the decision-making.

CONCLlJSIO

The aim of this paper was to present a practical ap
plication of one of the dynamic systems identifica
tion methods in medicine. At the same time \Ie
wanted to emphasize that implementation of identifi
cation. modelling. simulation and control methods in
this field not only imprmes the treatment process but
can rem\we lot of ache in this treatment as \Iell. and
enables a more e.'\act decision making. onen e\'en
saying the patient's life.
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