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Abstract: The paper deals with an application of models based upon interval linearization
in modelling human organism parameters, especially during long-term medical treat-
ments. The generated model enables to predict patient’s state as well as the impact of
taken therapeutics on it. Application of such models brings about improvement of the
treatment quality and helps physicians in the decision making process. Copyright © 2003
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1. INTRODUCTION

In the medical practice there are often encountered
diseases requiring a long-term treatment whereby it
is almost impossible to continuously monitor the
organism parameters. Very often. physicians are
obliged to go repeatedly through a huge amount of
data acquired from the blood, urine and other analy-
ses, to be able to take decisions based upon the pa-
tient’s state. This process can be supported by creat-
ing a model of patient’s state, based on which it is
possible to take a correct decision. Therefore we
focused on the identification of human organism
parameters under long-term medical treatments.
Results of blood tests, creation of their model and its
application in the patient’s state prediction have
facilitated the decision making about additional in-
terventions during the treatment. which helped to
improve the whole process. For the identification and
model generation we have used the interval lineariza-
tion method.

2. NONLINEAR SYSTEM IDENTIFICATION

2.1. Identification using the interval linearization
method

The interval linearization method is one of relatively
new methods for nonlinear systems modelling. Basi-
cally. it differentiates from other identification and
modelling approaches for such systems. one of which
consists in substituting the real system by aset of
nonlinear functions and relations which describe
processes in the system (the human organism can be
considered as a system): another possibility is substi-
tution of the real system by a mathematical model
acquired by its linearization in a chosen operating
point. or it is possible to create abstract nonlinear
models.

The  interval linearization  method  offers
a substantially different approach. generating a linear
model created not only for one operating point but
for a whole region called a linearization interval [1].
Such amodel is able to include properties of the
given system. whereby it requires neither to create so
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many models as in case of linearization in the operat-
ing point. nor to search intricate nonlinear functions
which implementation is often questionable.
Identification of nonlinear dynamic systems by the
interval linearization method has been invented in
1986. The method has been updated several times by
improving some of their properties or the identifica-
tion process itself [2] [3]. The presented method has
been applied not only in nonlinear system modelling
but also in designing controllers for nonlinear sys-
tems [4].

Identification of nonlinear dynamic systems consists
in splitting the whole working range of the input and
output variables by the limits uk; and yk;. respec-
tively, into several intervals (from where the name of
the method). Intersect of these intervals defines the
linearization interval (Fig. 1).

Generating a system model using this method re-
quires availability of the measured input and output
data. Measurements are to be carried out during the
system operation and organized in a table. Next. the
limits of individual intervals for the input and output
variables are to be specified. Intersect of these inter-
vals defines the linearization section. For every
nonlinear system there can be several such sections
and the identification yields model of each lineariza-
tion section in the following form

o) = q{" + i qf{v(l - i7) +i qy‘".‘u(l -(j-d+ 1D
(1)

or concisely

y(t) = z(t) ¥ k=1.2...kk 2)

where
z(t)=[ L.y(t-1).....y(t-ny).u(t-d-1).....u(t-d-nu+1)]
3)
q" is vector of model coefficients in the k-th lineari-
zation section, whereby

kK k k
qk= q,.9,-9 ) (4)

nu+ny

nu — number of samples of the input variable



ny - number of samples of the output variable

t -time

T — sampling time

d — input variable shift

k - index of the linearization interval

A total number m of linearization intervals for nu =1
andny=1is

m = mu.my

and for nu> I and ny > 1 the number of linearization
intervals is given by

kk = munu.m}'n'\. (3)
The procedure for determining the index "k" of the
linearization interval is as follows. If the output vari-
able y(t-i). i=1.2..ny is from the amplitude band
(_vks_l.ykg). s =1.2...my. then this band is denoted by
I;=s. Similarly. if the variable u(t-j-d+1). j=1.2...nu is
from the band (ukr_l.uk)r. r =1.2....mu. the corre-

sponding band is denoted lnVJ r. These bands

notations are collected in a vector 1=(1h. boweJusny)-

The linearization interval index is calculated as fol-
lows

k = 1] * IZZUI - 1).51 (6)
where

6|=m}'”’” for I=1.2.....ny (7)
81y = my™ mu" for I=1.2.....nu (8)

I — auxiliary index

For many systems. long-term operation measure-
ments of u(t). y(t) proved. that in practice. the num-
ber of linearization intervals does not comply with
their theoretical number and strongly depends on the

appropriateness of chosen limits and the volume of

measured data available.

Calculation of the linear model (1) or (2) for the k-th
linearization interval consists in determining the
vector of linearization coeflicients (4) from measured
samples v(t-i) and u(t-j-d+1) for i=1 ...nu.
within the k-th inearization interval.

I'he model itself is then specified from the relation
A'q*= b", from which we express the vector of the
model q" in the k-th linearization section using the
least squares algorithm. To apply it. it is necessary to
se tup the matrix A from measured values y(t-i) and
u(t-j-d+1) and the vector b* from measured values
Lk
v(1). For the k-th row of the matrix A holds

- = \(t-i) for i=1.2..ny  (9)
% iem = U(tjedt ) for j=1.2.....nu

akl =1

The r-th entry of the vector bk satisfies

b =y(t-0) (10)
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where r=1.2..n ny+tnutl < n
The identification result is the matrix Q

1 1 1

q() ql nu + ny
k k k
Q=19 qg .. )
0 1 nu+ m
m m m
qo q[ nu + ny
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Fig.1. Input/output characterisics of the system

3. IDENTIFICATION OF BLOOD SYSTEM
PARAMETERS

3.1. Data measurement

The considered method was verified in modelling
leucocytes parameters for one year. During a one-
year chemotherapeutic treatment blood samples were
taken sporadically and individual parameters were
measured. Values of individual parameters are organ-
ized in atable (Tab. 1). Input variables are values of
used therapeutics (V - vincristin. CP — cysplatinum).
or of certain supporting preparations (S). applied in
cases when the organism parameters have decreased
considerably. Output parameters are HG. Erv. HKG.
LE. TR. Medicine intake is denoted by ..1" in the day
of application.



Tab.l. Measured values of blood parameters
during the initial period

INPUTS OUTPUTS
Date N Cyk V CP S HG Ery gl\ LE TR
14.07.99 1 1 11 1 118 3.7029 2.1 186
200799 6 7 124 44037 1.6 225
22799 2 1 117 4.090.37 1.8 205
29799 7 16 1 93 3.260.371.52 143
31799 2 18 98 337038 12 149
3899 3 21 64 232 0.1 1 110
5899 2 23 82 2860.371.24 143
25899 20 43 21 1 126 4.130.35 29 224
2999 8 i 1 113 37037 1.58 184
6999 4 55 95 3.090.381.04 108
9999 3 58 1 95 341027 13 145
21999 12 70 109 3.490381.33 117
27999 6 76 104 34038 12 123
6.1099 9 85 113 3.740.36 1.08 281
13.1099 7 92 117 3.76 0.37 1.65 243
21199 5 112 96 3.180.380.74 138
5.11.99 3 115 94 330.27 0.8 149
9.11.99 4 119 101 335036 1.1 187

A graph of some monitored quantities is in Fig.2
whereby the leucocytes. which characterize patient’s
immunity are the most interesting parameter.
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Fig.2 Measured values of some monitored
quantities

3.2. Processing of measured data

As the input data were measured in various time
intervals. they need to be pre-processed and appro-
priately adapted for next computations. Computed
intervals between individual measurements and miss-
ing values have been interpolated so as to reflect in
the best way the values expected in the considered
time.
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The simplest interpolation method is the linear inter-
polation. For values in individual days it substitutes
the values obtained by a uniform distribution of the
states between two measured values.

The quadratic interpolation method is a more advan-
tageous one. using a quadratic approximation of
values between two measurements. Though it is quite
computationally demanding it follows better con-
tinuous changes of individual parameters.

Input variables have been substituted by exponentials
reaching their maximum at application time of basic
therapeutics when their concentration in organism
decreases successively. The exponential forgetting
factor changes with each considered variable.

\4 CP
A. 1 1
D 03 0.04

Table 2 summarizes values of measured. and interpo-
lated (linearly and quadratically) values. Measured
values of individual variables are shown in Fig. 3.
Comparison of linearly and quadratically interpolated
values is depicted in Fig. 4. In measurement instants
values of individual functions coincide. Leucocytes
and input variable values used for modelling are
shown in Fig. 5

Tab. 2. Approximation of selected parameters

of the organism

days
1 1 1 0 118 37029 21 119 373 029
2 0.7408 09608 0 119 382 03 202 119 3.73 0.29
3 0.5488 09231 0 120 393 032 193 122 401 0.31
4 04066 08869 0 121 405 033 1.85 125 422 033
5 03012 08521 0 122 417 034 1.77 126 437 035
6 02231 08187 0 123 428 036 1.68 127 444 0.36
7 0.1653 07866 0 124 44 037 1.6 126 446 0.37
8 0.1225 07558 0 121 425 037 1.7 124 44 037
9 1.0907 07261 0 117 409 037 1.8 120 424 037
10 0808 06977 0 114 397 037 176 116 407 0.37
11 05986 06703 0 110 385 037 1.72 109 3.84 0.37
12 04435 0643 0 107 3.73 037 168 103 365 0.37
13 03285 06188 0 103 362 037 164 986 35 037
14 02434 035945 0 999 35 037 16 952 338 037
15 0.1803 05712 0 964 338 037 156 932 33 037
16 1.1336 0.5488 0 93 326 037 152 924 326 0.37
17 0.8398 0.5273 0 9535 332 037 1.36 955 333 039
18 0.6221 035066 0 98 337 038 12 993 343 04
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Fig. 3 Graphical representation of the linear
approximation of selected organism parameters
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Fig. 4. Quadratic approximation of selected
parameters of the organism

For modelling blood parameters we have chosen one
of its most important representatives. namely the
number of leucocytes indicating patient’s state with
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respect to the possible application of chemotherapeu-
tics. Even the state of leucocytes (along with other
parameters. of course) determines whether it is pos-
sible to give the patient the therapeutics or not.

0 100 200 300 400
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Fig. 5 Parameters of the input therapeutics and the
response of the organism - leucocytes

3.3. Search of linearization intervals

A serious drawback of the described method is the
search for linearization intervals. i.e. specification of
limits for individual intervals. In practice this prob-
lem is being solved in various ways. As medical
processes are relatively slow a stepwise changing the
limits of domains and ranges of individual variables
can solve this problem.

Next. a model is calculated for all obtained intervals.
and a simulation is carried out with the already avail-
able samples. Individual models are compared using
the classical method of summing squared differences
between the measured and the calculated values.
Using a graphical representation of individual input
variables and modified values of squared error sums
for each model we can find the intervals with the
lcast difference between the model outputs and the
real values. Table 3 shows values of some limits
(hrl. hr2. hr3. hrd and the “sqe™ — sum of squared
errors).



Tab.3 Sum of squared errors (sge) as a
function of limits

pc hrt hr2 hr3 hr4 sko

1 01 05 07 24 0239
2 01 09 04 24 058
3 01 05 07 14 071
4 0.1 01 1 04 1.08
5 01 05 1 08 1.38
6 03 01 04 02 244
7 01 05 07 2 25
8 01 03 01 04 973
9 01 07 01 04 124
10 0.1 03 1 12 282
11 0.1 041 1 06 340
13 01 07 1 06 388
14 01 0.1 1 12
15 01 09 07 26 041
16 01 07 07 04 061
17 01 03 07 12 0.83
18 01 07 1 12 112
19 01 05 041 2 147

For the next analysis a model with the limits (hrl.
hr2. hr3.hr4) = ( 0.3:0.3;0.7:0.5) has been chosen.
Mathematical model and simulated data are in Fig. 6.
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Fig. 6 Simulation of LE parameters

499

4. APPLICATION OF GENERATED MODELS
4.1. Problems of patient s treatment.

Application of some therapeutics may bring about a
considerable worsening of some human organism
parameters and thus their intake is possible only
under the assumption that the patient tolerates such a
treatment. One of such procedures is the application
of cytostatics in curing oncogenous diseases. Appli-
cation of therapeutics is possible only if the leuco-
cytes parameters have reached some specified value
(2000). To find out the patient’s actual state it is
necessary to take his blood. evaluate the parameters
and to continue the treatment under the assumption
that the state is sufficiently good. If there are low
leucocytes. the blood taking has to be repeated after
1-3 days. Such frequent blood takings disturb the
patient. and make him suffer. Taking into account his
overall state. such a large number of blood with-
drawals cannot contribute to an improved recovery.
On the other hand frequent blood takings are impor-
tant because it is necessary to apply the therapeutics
in the specified time (necessity to keep the curative
procedures) or with a least possible delay.

It use to happen that despite numerous tests. the pa-
tient’s state does not improve and in order to keep
certain curative procedures it is necessary to apply
supporting and stimulating pharmaceuticals.

It is especially the decision making about whether to
make the patient suffer or stimulate the organism all
the same. which can be facilitated by the proposed
parameter model.

From Fig. 6 it is evident that in the last 250 -300
days of curing. the leucocytes (LE) number drops
and at the time of therapeutics application it even
does not reach the lower limit 2.

4.2. Simulation of the medical treatment

Based on the analysis of measured data and simula-
tion of the possible patient’s state (Fig. 6) it is possi-
ble to assume that the patient’s state will remain on a
low level for a long-time and he cannot be given the
relevant therapeutics due to it.

In a standard treatment the doctor takes the blood
samples several times and after having gathered
long-term results he decides to skip one cycle. Some
of the following facts underlie such a decision:

- on checking parameters he supposed that the pa-
tient’s state will improve. however this did not hap-
pen:

- there was a possibility of helping by other means.
however relatively much time has passed since then
and therefore such a stimulation is already inappro-
priate.

Of course. there are a lot of other facts to be consid-
ered in a physician’s decision making. Simulation of
patient’s state before starting a new curing cycle
could be one possible tool for helping his decision
taking. The obtained model shows that the organism
parameters are relatively low and the patient is not
able to create a sufficient amount of necessary sub-



stances. Should these facts be confirmed by the re-
sults from the first blood test. the physician can con-
sider application of stimulating therapeutics. support-
ing this decision by a simulation on the models.

In a real situation we have first simulated the impact
of the blood transfusion on other parameters. Trans-
fusion was carried out already at about the 100th day
of the curing procedure. Simulation results under
stimulator application are depicted in Fig. 7. Based
on obtained results (growth of the LE value above 3)
correctness of such a decision could have been an-
ticipated.

4.5

LE

Lem

Fig.7 Simulation of LE parameters after application
of a stimulator

Then the transfusion was completed and the whole
curative cyvcle was completed successfully.

Of course. the experience of physicians played an
important role in the whole treatment process as
well. and the proposed model has served only as one
supporting tool for the decision-making.

CONCLUSION

The aim of this paper was to present a practical ap-
plication of one of the dynamic systems identifica-
tion methods in medicine. At the same time we
wanted to emphasize that implementation of identifi-
cation. modelling. simulation and control methods in
this field not only improves the treatment process but
can remove lot of ache in this treatment as well. and
enables a more exact decision making. often even
saving the patient’s life.
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Certainly. the interval linearization method is not the
only suitable one but hopefully it is not the last one
applied in medicine. and its implementation will
stimulate application of other methods as well.

REFERENCES

S.A. Bilings and W.S.F. Voon: Piecewise linear non-
linear system identification. Internation Journal
of Control. 'ol 46,N.1.1987

Harsanyi L.. Kultan J.: Identifikacia nelinedrnych
systémov metédou intervalovej linearizacie.
Journal of Electrical Engineering. Vol 41.. No
11, 1990, str. 825-836.

Harsanyi L.. Kultan J.: Method of selective forgetting
for nonlinear system identification  Journal of
Electrical Engineering., Vol 43, No 7. 207-210.
Bratislava, 1992

Vesely V.. Kultan J.: Regulator synthesis for nonlin-
ear systems. Technical report EF SVST. De-
partment of Automatic Control Systems, 1992



